穀物的營養成分解析與健康指南


摘要

本篇文章深入探討穀物的營養成分與其對健康的重要影響,幫助讀者更好地理解如何選擇適合的穀物以促進身體健康。 歸納要點:

  • 穀物的營養成分多樣性,特別是全穀物如糙米和燕麥,富含纖維、維生素B群及礦物質,對健康有益。
  • 全穀物中的纖維能促進腸道益菌增長,有助於改善腸道健康並降低慢性疾病風險。
  • 選擇低升糖指數的全穀物,例如quinoa,有助於血糖控制,並可搭配其他蛋白質來源提升營養價值。
整體而言,選擇多樣化的全穀物不僅能提供豐富營養,也對預防慢性疾病至關重要。

對於來自 Kaggle 的營養成分資料進行探索性資料分析

我們在研究許多文章後,彙整重點如下
網路文章觀點與我們總結
  • 全穀是指稻米、小麥、玉米等穀物的可食部分,包括麩皮、胚乳和胚芽。
  • 全穀相比精製穀類,保留了更多營養成分,如維生素B群、維生素E及礦物質。
  • 每日建議攝取200-300克谷類食物,其中全谷物和雜豆類應占50-150克。
  • 全榖雜糧如糙米飯、全麥饅頭及紅豆等可以提供多樣養分,有助於均衡飲食。
  • 碳水化合物是身體主要能源,而全穀物也富含膳食纖維,有助於腸道健康。
  • 中國居民膳食指南提倡主食全谷化,強調健康飲食的重要性。

在日常生活中,我們的餐桌上經常出現各式各樣的穀物,但是否選擇了對身體最有益的呢?全穀食品不僅保留了豐富的營養成分,還能讓我們攝取更足夠的膳食纖維。每天適量地增加這些天然且未經加工的食品,不但能提升飲食品質,也對長期健康大有裨益。讓我們一起從小處著手,為自己的健康加分吧!

觀點延伸比較:
穀物類型主要營養成分健康益處推薦攝取量最新研究趨勢
全穀類(如糙米、全麥)維生素B群、膳食纖維、礦物質(如鐵、鎂)促進腸道健康,降低心血管疾病風險每日50-150克全穀物越來越多的研究支持全谷物的抗氧化特性
精製穀類(如白米、白麵包)低纖維、高升糖指數碳水化合物短期能量供應,但不利於長期健康建議減少攝取,若有需可適量使用作為短期補充能量的來源消費者開始重視精製與非精製穀物的差異,選擇更健康的飲食方案
雜豆類(如紅豆、綠豆)高蛋白質、纖維及微量元素(鋅、鉀等)增強免疫力,有助於控制體重和改善消化系統功能每日50-100克雜豆類食物最佳搭配全谷類一起攝取植物基飲食風潮持續攀升,醫學界鼓勵更多人將雜豆納入日常飲食中
燕麥片/燕麥粥β-glucan (可溶性纖維)、抗氧化劑降低膽固醇水平,改善心血管健康每日30-60克通過早餐或點心形式攝取許多健身專家推廣燕麥作為理想的運動前後餐選擇
玉米(整粒)碳水化合物、多種抗氧化劑(玉米黃質等)提高視力保護和抵抗自由基損害每日1份約100克左右的整粒玉米或其產品新興食品科技使得更多元利用玉米,例如無添加蒸煮即食產品

這個資料集包含80種含有營養成分的穀物。資料集80-cereals 來自Kaggle。

「如果你喜歡吃穀物,請務必避免這個資料集。看過這些資料後,我再也無法像以前那樣享受Fruity Pebbles了。」現在我們將逐步進行探索性資料分析(EDA),使用R語言。欲了解更多詳細資訊,您可以在這裡找到完整程式碼:🥣Cereals 🍎 營養 🔍 EDA 在Kaggle和🥣Cereals 🍎 營養 🔍 EDA 在GitHub上。我們需要匯入相關函式庫。

# Visualizations library(hrbrthemes) library(ggthemes) library(ggplot2) library(cowplot)  # Data Manipulation library(dplyr)  # Statistics library(DescTools)

接著我們匯入資料,在這個案例中使用的是來自 Kaggle 的資料集,名為 80-cereals。此程式碼將顯示資料框架作為輸出。

data <- read.csv("../input/80-cereals/cereal.csv", stringsAsFactors = FALSE) # Viewing the first 6 DataFrame records head(data, 6)

移除負面資料,將資料轉換以便公平地比較所有的穀物以杯為單位。

summary(data)

name               mfr                type              calories      Length:77          Length:77          Length:77          Min.   : 50.0    Class :character   Class :character   Class :character   1st Qu.:100.0    Mode  :character   Mode  :character   Mode  :character   Median :110.0                                                             Mean   :106.9                                                             3rd Qu.:110.0                                                             Max.   :160.0       protein           fat            sodium          fiber         Min.   :1.000   Min.   :0.000   Min.   :  0.0   Min.   : 0.000    1st Qu.:2.000   1st Qu.:0.000   1st Qu.:130.0   1st Qu.: 1.000    Median :3.000   Median :1.000   Median :180.0   Median : 2.000    Mean   :2.545   Mean   :1.013   Mean   :159.7   Mean   : 2.152    3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:210.0   3rd Qu.: 3.000    Max.   :6.000   Max.   :5.000   Max.   :320.0   Max.   :14.000        carbo          sugars           potass          vitamins       Min.   :-1.0   Min.   :-1.000   Min.   : -1.00   Min.   :  0.00    1st Qu.:12.0   1st Qu.: 3.000   1st Qu.: 40.00   1st Qu.: 25.00    Median :14.0   Median : 7.000   Median : 90.00   Median : 25.00    Mean   :14.6   Mean   : 6.922   Mean   : 96.08   Mean   : 28.25    3rd Qu.:17.0   3rd Qu.:11.000   3rd Qu.:120.00   3rd Qu.: 25.00    Max.   :23.0   Max.   :15.000   Max.   :330.00   Max.   :100.00        shelf           weight          cups           rating       Min.   :1.000   Min.   :0.50   Min.   :0.250   Min.   :18.04    1st Qu.:1.000   1st Qu.:1.00   1st Qu.:0.670   1st Qu.:33.17    Median :2.000   Median :1.00   Median :0.750   Median :40.40    Mean   :2.208   Mean   :1.03   Mean   :0.821   Mean   :42.67    3rd Qu.:3.000   3rd Qu.:1.00   3rd Qu.:1.000   3rd Qu.:50.83    Max.   :3.000   Max.   :1.50   Max.   :1.500   Max.   :93.70

我個人認為負的營養值是不可能的,但如果我錯了,請告訴我😉

data <- subset(data,carbo >= 0) data <- subset(data,sugars >= 0) data <- subset(data,potass >= 0) summary(data)

name               mfr                type              calories    Length:74          Length:74          Length:74          Min.   : 50    Class :character   Class :character   Class :character   1st Qu.:100    Mode  :character   Mode  :character   Mode  :character   Median :110                                                             Mean   :107                                                             3rd Qu.:110                                                             Max.   :160       protein           fat        sodium          fiber            carbo        Min.   :1.000   Min.   :0   Min.   :  0.0   Min.   : 0.000   Min.   : 5.00    1st Qu.:2.000   1st Qu.:0   1st Qu.:135.0   1st Qu.: 0.250   1st Qu.:12.00    Median :2.500   Median :1   Median :180.0   Median : 2.000   Median :14.50    Mean   :2.514   Mean   :1   Mean   :162.4   Mean   : 2.176   Mean   :14.73    3rd Qu.:3.000   3rd Qu.:1   3rd Qu.:217.5   3rd Qu.: 3.000   3rd Qu.:17.00    Max.   :6.000   Max.   :5   Max.   :320.0   Max.   :14.000   Max.   :23.00        sugars           potass          vitamins          shelf        Min.   : 0.000   Min.   : 15.00   Min.   :  0.00   Min.   :1.000    1st Qu.: 3.000   1st Qu.: 41.25   1st Qu.: 25.00   1st Qu.:1.250    Median : 7.000   Median : 90.00   Median : 25.00   Median :2.000    Mean   : 7.108   Mean   : 98.51   Mean   : 29.05   Mean   :2.216    3rd Qu.:11.000   3rd Qu.:120.00   3rd Qu.: 25.00   3rd Qu.:3.000    Max.   :15.000   Max.   :330.00   Max.   :100.00   Max.   :3.000        weight           cups            rating       Min.   :0.500   Min.   :0.2500   Min.   :18.04    1st Qu.:1.000   1st Qu.:0.6700   1st Qu.:32.45    Median :1.000   Median :0.7500   Median :40.25    Mean   :1.031   Mean   :0.8216   Mean   :42.37    3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:50.52    Max.   :1.500   Max.   :1.5000   Max.   :93.70

將所有部分轉換為杯的單位

serving_onecup <- data.frame(cereal = data$name,                               calories = round((data$calories/(data$cups*100)*100),2),                              protein = round((data$protein/(data$cups*100)*100),2),                              fat = round((data$fat/(data$cups*100)*100),2),                              carbo = round((data$carbo/(data$cups*100)*100),2),                              fiber = round((data$fiber/(data$cups*100)*100),2),                              sugars = round((data$sugars/(data$cups*100)*100),2),                              potass = round((data$potass/(data$cups*100)*100),2),                              vitamins = round((data$vitamins/(data$cups*100)*100),2)                             ) serving_onecup <- serving_onecup[order(serving_onecup$calories, decreasing=TRUE), ] head(serving_onecup,6)


summary(serving_onecup)

    cereal             calories        protein            fat         Length:74          Min.   : 50.0   Min.   : 0.750   Min.   :0.000    Class :character   1st Qu.:110.0   1st Qu.: 2.000   1st Qu.:0.000    Mode  :character   Median :134.3   Median : 3.000   Median :1.000                       Mean   :143.9   Mean   : 3.587   Mean   :1.425                       3rd Qu.:160.0   3rd Qu.: 4.480   3rd Qu.:2.000                       Max.   :440.0   Max.   :12.120   Max.   :9.090        carbo           fiber            sugars          potass       Min.   : 8.00   Min.   : 0.000   Min.   : 0.00   Min.   : 15.0    1st Qu.:15.00   1st Qu.: 0.250   1st Qu.: 3.00   1st Qu.: 47.5    Median :17.41   Median : 2.000   Median :11.00   Median : 95.0    Mean   :19.32   Mean   : 3.657   Mean   : 9.45   Mean   :152.7    3rd Qu.:21.83   3rd Qu.: 4.000   3rd Qu.:13.40   3rd Qu.:205.2    Max.   :68.00   Max.   :30.300   Max.   :20.90   Max.   :969.7       vitamins       Min.   :  0.00    1st Qu.: 25.00    Median : 33.33    Mean   : 38.05    3rd Qu.: 37.31    Max.   :133.33 

我們進行的探索性資料分析 (EDA) 專注於每杯的卡路里、脂肪、碳水化合物、纖維和糖分。為了便於展示每卡路里的資料,我們需要對卡路里進行排序,然後將資料分為上半部和下半部。

#sorting by calories serving_onecup <- serving_onecup[order(serving_onecup$calories, decreasing=TRUE), ] head(serving_onecup,6)


資料視覺化宣告

#Data Visualization size options(repr.plot.width = 20, repr.plot.height = 20)  #higher calorie cereals df <- head(serving_onecup, 15) top_cal <- ggplot(data = df, mapping = aes(x = cereal, y = calories)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=calories), fill = "red", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 15 cereals with most calories") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")  #low calorie cereals df1 <- tail(serving_onecup, 15) bot_cal <- ggplot(data = df1, mapping = aes(x = cereal, y = calories)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=calories), fill = "#006400", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 15 cereals with less calories") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")

我們繪製資料視覺化圖表。

plot(top_cal+ coord_polar())


plot(bot_cal+ coord_polar())


為了便於顯示每種蛋白質的資料,我們將資料按蛋白質進行降序排序,然後拆分出頭部和尾部。

#sorting by protein serving_onecup <- serving_onecup[order(serving_onecup$protein, decreasing=TRUE), ] head(serving_onecup,6)


資料視覺化宣告

#size of the visuals options(repr.plot.width = 20, repr.plot.height = 20)  #top of the data (cereals with more protein per cup) df <- head(serving_onecup, 15) top_protein <- ggplot(data = df, mapping = aes(x = cereal, y = protein)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=protein), fill = "#006400", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("Top 15 high protein cereals per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")  #tatil of the data (cereals with less protein per cup) df1 <- tail(serving_onecup, 15) bottom_protein <- ggplot(data = df1, mapping = aes(x = cereal, y = protein)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=protein), fill = "red", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 15 less protein cereals per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")

並且我們繪製資料視覺化圖表。

plot(top_protein+ coord_polar())


plot(bottom_protein+ coord_polar())


現在我們按照脂肪含量進行降序排序,然後分割出頭部和尾部。

# sorting by fat  serving_onecup <- serving_onecup[order(serving_onecup$fat, decreasing=TRUE), ] head(serving_onecup,6)


資料視覺化宣言

#visual size options(repr.plot.width = 20, repr.plot.height = 20)  #data with more fat per cup df <- head(serving_onecup, 15) top_fat <- ggplot(data = df, mapping = aes(x = cereal, y = fat)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=fat), fill = "red", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 15 cereals with most fat per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")  #data with less fat per cup df1 <- tail(serving_onecup, 40) bottom_fat <- ggplot(data = df1, mapping = aes(x = cereal, y = fat)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=fat), fill = "#006400", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 40 cereals with less fat per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")

我們會對資料進行視覺化處理。

plot(top_fat+ coord_polar())


plot(bottom_fat)


現在我們將資料按碳水化合物含量進行降序排序,然後再分割出頭部和尾部。

# sorting by carbs serving_onecup <- serving_onecup[order(serving_onecup$carbo, decreasing=TRUE), ] head(serving_onecup,6)


資料視覺化宣告

#visuals size options(repr.plot.width = 20, repr.plot.height = 20)  #High carb data df <- head(serving_onecup, 10) top_carbo <- ggplot(data = df, mapping = aes(x = cereal, y = carbo)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=carbo), fill = "red", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 10 cereals with most carbs per cup") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")  #low carb data df1 <- tail(serving_onecup, 10) bottom_carbo <- ggplot(data = df1, mapping = aes(x = cereal, y = carbo)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=carbo), fill = "#006400", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 10 cereals with less carbs per cup") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")

我們將資料視覺化進行繪圖。

plot(top_carbo+ coord_polar())


plot(bottom_carbo+ coord_polar())


現在我們按纖維數量進行降序排序,然後分割出頭部和尾部。

# sorting by fiber serving_onecup <- serving_onecup[order(serving_onecup$fiber, decreasing=TRUE), ] head(serving_onecup,6)


資料視覺化宣告。

#Visuals size options(repr.plot.width = 20, repr.plot.height = 20)  #high fiber data df <- head(serving_onecup, 10) top_fiber <- ggplot(data = df, mapping = aes(x = cereal, y = fiber)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=fiber), fill = "#006400", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("Top 10 high fiber cereals per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")  #low fiber data df1 <- tail(serving_onecup, 40) bottom_fiber <- ggplot(data = df1, mapping = aes(x = cereal, y = fiber)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=fiber), fill = "red", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 40 less fiber cereals per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")

我們繪製資料視覺化圖表。

plot(top_fiber+ coord_polar())


plot(bottom_fiber)


現在我們將資料依照糖分進行降序排序,然後再劃分出前端與尾端的資料。

# sorting by sugar serving_onecup <- serving_onecup[order(serving_onecup$sugars, decreasing=TRUE), ] head(serving_onecup,16)


資料視覺化宣言

#visual size options(repr.plot.width = 20, repr.plot.height = 20)  #High sugar data df <- head(serving_onecup, 15) top_sugar <- ggplot(data = df, mapping = aes(x = cereal, y = sugars)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=sugars), fill = "red", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 15 cereals with most sugar per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")  #low sugar data df1 <- tail(serving_onecup, 20) bottom_sugar <- ggplot(data = df1, mapping = aes(x = cereal, y = sugars)) +          geom_bar(stat = "identity", mapping = aes(fill = cereal, color = cereal), alpha = .7, size = 1.1) +          geom_label(mapping = aes(label=sugars), fill = "#006400", size = 6, color = "white", fontface = "bold", hjust=.7) +          ggtitle("The 20 cereals with less sugar per cup.") +          xlab(" ") +          ylab("") +          theme_ipsum() +          coord_flip() +          theme(plot.background = element_rect(color = "black", size = 1.1),                plot.title = element_text(size = 24, hjust = .5, face = "bold"),                axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),                axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),                axis.text.x = element_text(size = 20, face = "bold"),                axis.text.y = element_text(size = 20, face = "bold"),                legend.position = "none")

我們會繪製資料視覺化圖表。

plot(top_sugar+ coord_polar())


plot(bottom_sugar)


建立僅包含 Cheerios 資料的資料集

cheerios <- serving_onecup[serving_onecup$cereal == "Cheerios",] cheerios <- as.data.frame(t(cheerios[,-1])) names(cheerios)[1]<-paste("cheerios") cheerios 


建立僅包含 All-Bran 資料的資料集

allbran <- serving_onecup[serving_onecup$cereal == "All-Bran",] allbran <- as.data.frame(t(allbran[,-1])) names(allbran)[1]<-paste("AllBran") allbran


資料視覺化宣告

#visual size options(repr.plot.width = 20, repr.plot.height = 10)  #Cheerios data df <- cheerios Cheerios <- ggplot(data = df, mapping = aes(x = row.names(df), y = cheerios)) +          geom_segment(aes(xend=row.names(df), yend=0, color = row.names(df)), size = 2, alpha = .5) +          geom_point(mapping = aes(fill = row.names(df)), size = 4, shape = 21) +          coord_flip() +          theme_economist() +          ggtitle("Cheerios - Nutrition facts") +          xlab("") +          ylab("") +          theme(plot.background = element_rect(fill = "#F8F8FF", color = "purple"),                axis.title.x = element_text(size = 13, face = "italic"),                axis.title.y = element_text(size = 13,face = "italic"),                axis.text.x = element_text(size = 13, face = "bold"),                axis.text.y = element_text(size = 13, face = "bold"),                legend.position = "none")  #All-Bran data df1 <- allbran AllBran <- ggplot(data = df1, mapping = aes(x = row.names(df1), y = AllBran)) +          geom_segment(aes(xend=row.names(df1), yend=0, color = row.names(df1)), size = 2, alpha = .5) +          geom_point(mapping = aes(fill = row.names(df1)), size = 4, shape = 21) +          coord_flip() +          theme_economist() +          ggtitle("All-Bran - nutrition facts") +          xlab("") +          ylab("") +          theme(plot.background = element_rect(fill = "#F8F8FF", color = "purple"),                axis.title.x = element_text(size = 13, face = "italic"),                axis.title.y = element_text(size = 13,face = "italic"),                axis.text.x = element_text(size = 13, face = "bold"),                axis.text.y = element_text(size = 13, face = "bold"),                legend.position = "none")

我們會繪製資料視覺化圖表。

plot_grid(Cheerios, Cheerios + coord_polar() , ncol = 2, nrow = 1)


plot_grid(AllBran, AllBran + coord_polar(), ncol = 2, nrow = 1)


謝謝!

參考來源

全穀穀物的營養與保健功能

一、全穀的定義. 全穀是指稻米、小麥、玉米、薏. 仁等各種穀物中全部可食用的部分,. 由麩皮、胚乳和胚芽等3 部分組成。 根據歐盟2005-2010 年的健康穀物計畫.

國民健康署也重視的全穀飲食-全穀的健康意義- 有其田

國民健康署呼籲,應該多食用保持天然型態的「原型食物」,全穀保留穀物完整型態,營養成分比精製穀類完整,營養也更豐富。有許多常吃到的穀類,也是實用全穀型 ...

來源: havefarm.com

111年12月吃全穀,健康GOOD! - 營養教育專欄

穀物所去除的外層包含麩層與胚芽,其含有豐富的維生素B1、B2、維生素E和礦物質如磷、鎂、鉀等,膳食纖維的含量也是遠遠多於精製後的穀物。而其他根莖類主食如南瓜、地瓜、 ...

6大類食物

全榖雜糧類 白米飯是最常被當作主食的全榖雜糧類食物,但搭配其他全榖雜糧類例如:糙米飯、全麥饅頭、甘藷、紅豆、綠豆等來獲取其他營養素(維生素B群、維生素E、礦物質及 ...

穀物類- 衞生防護中心

穀物類. 營養價值. 含豐富碳水化合物; 少量維生素B1、B6; 含植物性蛋白質; 全穀物食物更含有豐富膳食纖維、礦物質如錳和鋅. 主要功用. 碳水化合物是身體的 ...

主食全谷化意義重大,專家教你怎麼吃夠全谷物

《中國居民膳食指南(2022)》建議,每天攝入谷類食物200-300克,其中全谷物和雜豆類50-150克。 “主食全谷化包含三層含義,第一層含義是'主食',它為我們機體 ...

來源: 人民网

原來五穀雜糧營養與好處這麼多!但小心這些人並不適合穀物飲食。

穀物(Grain)是人類最大的食品能源之一,其中分為全穀物和精緻穀物,這兩者的營養價值可是相差甚遠。所謂「全穀物」的定義是指整顆穀物經過處理後仍然保有與原穀物比例 ...

來源: 溫室好食道

均衡飲食第一步,全榖雜糧吃起來 - 福穀樂包子

加上實證營養學原則,提出適合多數台灣人的飲食建議,製訂出「每日飲食指南」,涵蓋六大類食物:全穀雜糧類、豆魚蛋肉類、乳品類、蔬菜類、水果類、油脂與堅果 ...

來源: fukurobun.com.tw

D.B.

專家

相關討論

❖ 相關專欄